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SUMMARY

The present study documents in detail the effect of initial mean velocity

field on the stability characteristics of longitudinal vortices. The temporal

stability of isolated multiple cell vortices is considered. The types of

vortices studied in this work include single cell as well as two and three

cell vortices. It is shown that cell multiplicity in the vortex core has

drastic effects on the stability characteristics. On the basis of numerical

calculations, it is concluded that the growth rates of instabilities in

multiple cell vortices are substantially larger (two to three fold increases

are observed) than those of a single cell vortex. It is also determined that

there is a substantial increase in the effective range of axial and azimuthal

wavenumbers where instabilities are present, but of most importance is the

appearance of a variety of viscous modes of instability. In the case of

vortices, these latter instabilities which highlight the importance of viscous

forces have never been reported before. For the case of a two cell vortex,

these effects are discussed in detail.

A Chebyshev spectral collocation method with staggered grid was developed

for application to stability calculations for general three dimensional

swirling flows. The stability problem is formulated in the primitive variable

form; hence the use of staggered grid eliminates the need for artificial

pressure boundary conditions. It is shown that this method is robust and

produces results very accurately and efficiently.



While validating the spectral collocation algorithm, two new viscous

modes of instability for Batchelor's vortex were found. These two forms of

instabilities include an axisymmetric, n = O, as well as an asymmetric, n = 1

mode. Here, n is the azimuthal wavenumber of the disturbance. It is shown

that both of these modes are consistent with the pathology of contrail photos

of large trailing line vortices as well as with experimental measurements

conducted in laboratory wind tunnels. Both of these disturbances are

discussed in some detail.
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LIST OF SYMBOLS

a constant for coordinate mapping (Eq. (4.4))

constant non-dimensional pressure gradient

center mode instabilities

perturbation growth rate (_i/_)

perturbation phase speed (_r/:)

coefficient matrix representing discretized differential operator

unit vectors in cylindrical (r, e, z) coordinates

radial perturbation eigenfunction

a similarity variable for the mean velocity profile

azimuthal perturbation eigenfunction

axial perturbation eigenfunction

eigenvalue coefficient matrix

azimuthal wavenumber

pressure perturbation eigenfunction

perturbation pressure

combined mean and perturbation pressure

a swirl parameter defined as the ratio of maximum azimuthal

velocity to the centerline axial velocity

a swirl parameter related to q as defined on page 44

ring mode instabilities

Wo Ro
Reynolds number based on pipe radius -

v

pipe radius

radial coordinate
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the radial position where far field boundary conditions
(at infinity) are applied

a local radius

dimensional radial coordinate

scaling factors obtained from coordinate mapping

mean radial velocity

radial perturbation velocity

combined mean and perturbation radial velocity

mean azimuthal velocity

azimuthal perturbation velocity

total velocity vector

perturbation velocity vector

combined mean and perturbation azimuthal velocity

mean axial velocity

axial perturbation velocity

wall mode instabilities

a function representing the radially dependent part of the
mean axial velocity

combined mean and perturbation axial velocity

centerline axial velocity

two constants in the axial velocity of a Batchelor vortex
(Eq, (4.2))

a vector representing the eigenfunctions

axial coordinate

Greek Symbol s

axial wavenumber

compressibility factor
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Chapter i

INTRODUCTION

The study of the stability of streamwise vortices is an important and

active area of major current research. Control and manipulation of organized

longitudinal vortical motions is of interest for several applications such as

the wake-vortex hazard problem, three-dimensional flow separation control, and

combustor optimization. The breakdown of leading edge vortices on delta

wings, which severely reduces lift, and the very stable wing tip vortices shed

from large commercial aircraft, which determine the flight frequency at

airports, are two classical examples.

Although the best (and natural) way to attack these problems is through

theoretical investigations or full numerical simulations, major difficulties

exist. The theoretical difficulty with stability analyses was identified in

the classic work of Howard and Gupta [I]*. They determined that for steady,

inviscid, incompressible three-dimensional vortices subjected to three-

dimensional disturbances, no general necessary and sufficient condition for

stability (or instability) could be found. Hence, to obtain stability

characteristics, each vortex flow must be studied individually. After twenty-

five years of active research, the finding [i] still holds today which is a

source of major disappointment. Aside from the prohibitive cost of each

numerical simulation, computational results lack the needed spatial

*The numbers in brackets indicate references.



resolution. They are also restricted to low Reynolds number flows, and the

proper imposed outflow boundary conditions are unclear. Therefore, for

practical purposes, at the present time, one is forced to rely on the same

tools which have been developed as far back as seventy years ago and were

applied successfully to studies of the stability of boundary layer flows. One

such tool is normal mode analysis. Indeed in the present author's opinion,

our current understanding of vortex stability resembles the state of affairs

for boundary layer stability in the 1930's. Our total lack of understanding

of the importance of such effects as

(a) initial mean velocity profile

(b) non-parallel mean velocity profiles

(c) turbulence

(d) density stratification

(e) compressibil ity

on the stability characteristics of vortices is widely known and a source of

concern. Meaningful experimental data are rare because vortices are very

sensitive to probe intrusion and flow visualization is biased by the strong

body forces acting on any foreign particles. Also, it is very difficult to

isolate the effects of each of the parameters mentioned above on vortices,

much less measure them. Even the stability calculations conducted numerically

have had their share of problems. The complexity stems from the three-

dimensional nature of the phenomena and hence the necessity of finding three-

dimensional mean velocity profiles which are solutions of the Navier-Stokes

equations. Most of the stability calculations to date have used Batchelor's

vortex [2], and in some cases Long's vortex [3, 4] or solid body rotation

superimposed on Poiseuille flow in a pipe as the basic unperturbed flow.



The present study is directed toward understanding the influence of the

_nitial mean velocity profile on the stability of an axial vortex. From an

engineering standpoint, the research goal is to develop vortex control strate-

gies via alteration of vortex stability characteristics. Vortex stability can

be altered through modification of the initial three-dimensional mean-velocity

field of the vortex. Bushnell (private communications) has put forth the idea

that once the desired stability characteristics are produced by a particular

velocity profile, the control problem can be inverted in the sense that the

wing tip geometry can be tailored to produce the requisite velocity profile.

First, an overview of some of the important theoretical and computational

studies regarding hydrodynamic stability of vortices is given. This review is

by no means exhaustive, but the cited papers are those which have been judged

relevant to the present research. It must be emphasized here that no attempt

has been made to relate the current work to the question of vortex breakdown

as described in the open literature. As has been mentioned by Leibovich [5],

vortex stability and vortex breakdown are two distinct phenomena (problems)

which may, in some circumstances, be interrelated. Many reviews have been

written concerning the breakdown of vortices. The reader is referred to the

works of Hall [6], Hall [7], Leibovich [5, 8] and Escudier [9] for further

information regarding vortex breakdown. In Chap. 2, the stability problem is

formulated and the governing equations, along with boundary conditions, are

derived. The normal mode analysis is discussed briefly and also the type of

mean velocity profiles employed in the present work are explained fully.

Chapter 3 contains the numerical algorithm employed in these calculations. It

is an extension of the spectral collocation technique developed recently by

Khorrami, Malik and Ash [10]; hereafter referred to as KMA. The method is

tested for convergence and accuracy against the results of some well known



calculations and the results are reported in Chap. 4. Specifically, two cases

have been considered; PoiseuiIle flow in a pipe, and Batchelor's vortex. In

the latter case, two new viscous modes of instability have been found which

have not been reported previously. Chapter 5 contains the stability results

for a variety of mean velocity profiles. The profiles include a single cell

vortex as well as multiple cell vortices. Finally, the concluding remarks are

presented in Chap. 6. Here the major results obtained in Chaps. 4 and 5 are

highlighted and suggestions for future work are given.

The review in this chapter is broken up into four separate sections.

Section one contains those stability criteria which are general in nature and

do not depend on the form of the assumed mean velocity profile. The stability

results for Hagen-Poiseuille flow with superimposed solid body rotation is

discussed in section two. Section three is devoted primarily to the stability

of Long's vortex but also includes some other miscellaneous profiles.

Finally, the stability characteristics of Batchelor's vortex are presented in

the fourth section. It must be stressed here that, unless otherwise specified

explicitly, the stability results presented in these sections are for

inviscid, incompressible fluid. Hence, the viscous results are identified

explicitly in this review while the inviscid results are not.

1.1 General Stability Criteria

The hydrodynamic stability of a vortex was first studied by Lord Rayleigh

[11]. In his classical paper, he showed (intuitively and using an angular

momentum argument) that a necessary and sufficient condition for stability of

a vortex without an axial velocity component was that the square of

circulation must increase outwards. That is

> o (1.11
dr



everywhere. Here, F is the circulation and r is the radial coordinate.

Rayleigh's result was proved in a rigorous manner mathematically by Synge

[12], who showed that stability of a heterogeneous vortex is assured if and

only if

d
(pF2) > O, (1.2)

where p is the density. It is clear from Eq. (1.2) that in the case of a

constant density fluid, Rayleigh's criterion is obtained. Much later, Howard

and Gupta [1] were able to give a sufficient condition for the stability of a

vortex with an axial velocity component (subject to axisymmetric

disturbances). They found that for stability the local inequality

i dF2/ dW2

r--3-dr ,[_-_-) _ 1/4 (1.3)

must be satisfied everywhere. Here, W is the axial velocity. It is obvious

from the above criterion that axial shear has a destabilizing effect. It must

be emphasized that vio|ation of (1.3) does not necessarily meaninstability.

For non-axisymmetric disturbances, Howard and Gupta found a sufficient

condition for stability in terms of axial and azimuthal wavenumbers. They

stated that this criterion is always violated for sufficiently small axial

wavenumbers, and while this does not imply instability, it has led them to

suggest that no general necessary and sufficient condition is obtainable. As

indicated earlier, their statement still holds and thus far no new general

criterion has been obtained.

1.2

The stability

investigators.

Stabi|ity of Hagen-Poiseuille Flow with
SuperimposedRigid Rotation

of rotating pipe f|ows has been studied by many

Using the radial disturbance eigenfunction equation derived by
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Howard and Gupta, Pedley [13] showed (interestingly in an analytical and
Wo

tractable manner) that for a very small Rossby number (_ z2-Q-TT-' where Qo is
oo

the angular velocity of the pipe wall, Ro is the pipe radius and Wo is the

centerline axial velocity) the flow is unstable to non-axisymmetric

disturbances of sufficiently large axial wavelength. He found that, although

both solid body rotation and Poiseui]Ie flow in a pipe are stable with respect

to infinitesimal disturbances, the superimposedcombined flow (which resembles

a helical vortex) is highly unstable. These disturbances are helical

traveling waves which wrap around the mean flow in the opposite direction to

the streamlines. The growth rate of the most rapidly growing disturbance is

2E Q . In a follow-up paper, Pedley [14] showed that for viscouso

disturbances, the critical Reynolds number, Rec, has a value of 82.9

corresponding to azimuthal wavenumber, n = -i. The critical Reynolds number

increases as the value of azimuthal wavenumber, n, increases. The

disturbances are stationary relative to the rotating frame of reference, and

as the Reynolds number increases, the wavenumberof the most rapidly growing

disturbance also increases. Pedley's findings were confirmed by Metca]fe and

Orszag [15] who employed a spectral tau method; and later on they were

reconfirmed by KMA.

Maslowe [16] extended the work of Pedley [13] without making any

assumption as to the magnitude of the Rossby number, _. He showed that the

most unstable modes have negative azimuthal wavenumbers, n. They spiral in

the same direction as the basic flow rotation (note this is in contradiction

to Pedley's finding which is caused by different interpretations of what

direction a wave with negative azimuthal wavenumber spirals) but propagate

upstream in the axial direction with an axial phase speed 0(_-1). The

amplification factor and the axial wavenumber, _, of the fastest growing

11



disturbance peaked at a finite Rossby number_ of 0(1) while the growth rate

showed little variation with n for Inl _ 2 at finite values of E. These

instabilities persist at very large values of _ and have larger growth rates

than suggested previously. Maslowe was also able to prove that a necessary

condition for instability could be predicted using a parameter, Yr' defined by

Yr = :_Qo W+ n Qo - mr ' (1.4)

where mr is the real part of the growth rate, m.

in the interval (0, Ro), the flow was unstable.

If Yr was zero anywhere

Condition (1.4) is a formal

statement for the existence of a critical layer in inviscid swirling f|ows.

The neutral stability curves for rotating Poiseuille flow subjected to

viscous disturbances is given by MacKrodt [17]. He found that the first mode

which becomes unstable is for the case of n = - 1 with a critical Reynolds

numberof Rec = 82.88 which is exactly the value obtained by Pedley. However,

MacKrodt's major observation was the fact that at high Reynolds numbers, the

amount of rotation required for destabilization is much smaller than had been

expected.

In a very extensive study by Cotton and Salwen [18], MacKrodt's results

were extended to much higher Reynolds numbers, Re, and rotation rates, Qo" In

their viscous calculations, they found that the instability region is pushed

to higher Re and Qo when : _ 2. The disturbances are center mode at least

for high m; that is most of their energy is confined near the centerline of

the pipe. The bulk of their study was directed toward the n = -1 mode where

they calculated the neutral stability curves for the primary mode and for

several higher modes (the existence of these higher modes were first

established by Duck and Foster [19] for the case of a trailing line vortex; we

will come back to this point repeatedly as the review proceeds). Cotton and

12



Salwen found out that although the upper branches of the neutral curves are in

excellent agreement with the results of Pedley the lower branches behave in a

more complicated manner. That is, there were many kinks, loops, points of

degeneracy, branching, and mode crossing or jumping associated with the lower

branch which had not been identified previously.

A study of the asymptotic nature of the neutral modes in the case of

Inl >> I was attempted by Maslowe and Stewartson [20] using perturbation

theory. Expanding the eigenfunctions in descending powers of n, they showed

that the neutral disturbances were of the wall mode type and there are

infinite numbers of neutral stability modes for any n and _, which is

consistent with the results of Pedley [13] and Duck and Foster [19]. However,

the neutral wall modes obtained by [20] are not the limiting inviscid modes

(as Re _ _) associated with the viscous modes obtained by Cotton and Salwen.

This important discrepancy with the viscous results of [18] led [20] to

suggest that the role of viscosity in swirling flows is more subtle than

previously thought, and that it alters the shape of the perturbation's

eigenfunction significantly. For the case of n = -I, Maslowe and Stewartson

[20] resorted to a numerical method and found the eigenfunction structure

differed significantly from the modes with large n. At finite values of _,

the critical layer associated with n = -I was close to the centerline.

However, as E ÷ _, the critical layer moved very slowly toward the pipe

wall. Finally, Maslowe and Stewartson postulated from their results that if a

swirling pipe flow meets the conditions

V(R o) _ O, (l.5a)
and

dW
d--F(Ro) O, (1.5b)

then the flow must be unstable.

£3



The results for neutrally stable disturbances were obtained in a closed

form by Ito, Suematsu, and Hayase [21]. However, rather than assuming

Poiseuille flow, they employed a uniform axial velocity. They found that

there are an infinite number of higher modes for each distinct set of flow

parameters. Looking for stationary waves, they found the range of the Rossby

number for which there exists a stationary axisymmetric mode (n = O) to be

0 < E < 0.522 . (1.6)

However, in the case of non-axisymmetric modes, they stated that no such

restriction on the value of Rossby number exists. Since they never looked for

unstable disturbances, no conclusions can be made with regard to the

possibility that a pipe flow might become unstable even though it does not

meet the requirement specified in (1.5b).

1.3 Stability of Long's Vortex

The similarity solution for a bathtub vortex due to Long [3, 4], has been

employed by several researchers to obtain the stability characteristics of

tornado type vortices. Such a vortex was first used by Burggraf and Foster

[22]. However, they had great difficulties with their numerical approach (a

local shooting method) in obtaining converged solutions. They attributed the

failure of the numerical method to the algebraically (as contrasted with

exponentially) decaying axial velocity W. An algebraically decaying mean flow

requires a large integration radius at which the far field boundary conditions

are imposed, which in turn causes great difficulties with the integration step

size. The dependency of the eigenvalues on this radius will be explained in

greater detail in Chap. 4. Switching to an exponential velocity profile,

Burggraf and Foster obtained converged solutions and appear to be the first to

14



report, numerically, the existence of a spectrum of unstable eigenvalues (a

result which generally is credited to Duck and Foster [19]). They found that

as in the case of a rotating pipe, the most dangerous disturbances have an

azimuthal wavenumber, n = -i.

The calculations of [22] were extended by Foster and Duck [23].

Employing a global finite difference technique similar to that of [19], they

encountered no difficulty in obtaining converged results for Long's vortex.

They showed that only the negative azimuthal wavenumbers are unstable and the

most unstable mode is approached in the limit as n + - _. This result, which

apparently holds for all inviscid swirling flows, was first reported by

Lessen, Singh, and Paillet [24] for the case of a trailing line vortex. The

general belief in the stability community is that viscosity would effect these

disturbances so that the most unstable mode would occur at a finite value of

n. Foster and Duck mentioned that every effort to obtain instabilities for n

0 failed; and that a vortex with a single cell core is more unstable than a

two cell vortex. It is also apparent from their growth rate plots that in the

case of the Long vortex, inviscid instabilities are an order of magnitude

weaker than for the case of a trailing line vortex.

Staley and Gall [25] employed a vortex which has continuous velocity

components, but whose vorticity field has many discontinuities. Their work is

mentioned to show that even with such a crude approximation for the mean field

of a vortex, they obtained results that in general substantiate the findings

of [19, 23, 24]. That is, the solutions indicate an infinite number of higher

modes and the most unstable mode is approached as n ÷ -. They also

obtained an instability criterion (for large n) in terms of the vorticity

field which appears to be another version of the sufficiency condition first

reported by Leibovich and Stewartson [26].

15



1.4 Stability of Batchelor's (Trailing Line) Vortex

The stability of the mean velocity profile of a trailing line vortex

(Batchelor [2]) was studied by Lessen et al. [24] with respect to

infinitesimal, non-axisymmetric disturbances. It was found that negative

azimuthal wavenumbersare destabilized by the addition of swirl. Lessen et

al. discovered that the stability characteristics of the vortex are strongly

dependent on the value of q, a swirl parameter which is related to the ratio

of the maximumswirl velocity to the maximumaxial velocity (this parameter is

defined in Chap. 4). All wavelengths appear to becomedamped, and the flow is

completely stabilized at a value of _ slightly greater than 1.5. They found

that the most unstable wave is obtained in the limit n ÷ - _, while the

axial wavenumberassociated with maximumgrowth rate also increases without

bound. Following their earlier work, Lessen and Paillet [27] performed a

viscous stability calculation for the trailing line vortex. They obtained

results similar to those of Pedley [14] which indicated that the critical

Reynolds number increases as Inl increases, with the first unstable mode

corresponding to n = -1. Their calculations of neutral stability curves

showedthat the values of the critical wavelength and critical Reynolds number

are not very sensitive to the exact value of q, and at large _, stability

is insured for any wavelength and Reynolds number. However, their results

are limited to a small range of Reynolds numbers (Re < 150) which later will

be shown to be inadequate. Duck and Foster [19] extended the work of Lessen

et al. [24] and found a continuous spectrum of unstable modes. The spectrum

contains infinite numbersof higher modesfor each set of particular values of

_, n, and q. They showedthat the numberof unstable modesdepends directly

on the number of grid points, N, so that as N increases the number of these

unstable modes increases as well. It is shownby KMAthat although they are

16



inviscid in nature, these higher modes exist at much lower Reynolds numbers

than expected.

The asymptotic behavior of the most unstable mode for large azimuthal

wavenumber(Inl >> 1) was obtained by Leibovich and Stewartson [26]. They

showed that as n ÷ - ®, the maximumgrowth rate, _i' approaches a constant

value, _i-" Thesedisturbances are ring modes; that is they are confined to

the vicinity of a local radius -- say r = ro. There are also multiple

critical layers where Yr = O; and it was pointed out by [26] that both the

ring modes and the wall modes obtained by Maslowe and Stewartson [20] may

coexist. As will be shown later, this indeed is the case for multiple cell

vortices where wall modes, ring modesand center modesall coexist. Leibovich

and Stewartson were able to confirm the results of [19] and showedthat as one

gets nearer to the neutral stability curves, the wave speeds of different

modes approach each other. This effect causes manymodejumpings as pointed

out by Cotton and Salwen [18] (in the case of a rotating pipe) and numerical

calculations becomeextremely difficult. Also the modejumping becomesmore

severe as n becomeslarge. Leibovich and Stewartson's analysis is va|id only

for the case of the most unstable modeand 1/2 _ < _/n < 1/_ with a/n suffi-

ciently distant from the end points of the intervals. Finally, for a columnar

vortex, they were able to obtain a sufficient condition which states that the

flow is unstable if

do dQ dr rdW_2
V_-r- [a-FB-r-+ _FF) ] < 0 , (1.7)

where Q is the local angular velocity and V is the velocity component in the

azimuthal direction. Using a Taylor series expansion of the flow variables

about a local radius r = ro, EmanueI [28] showed that when viewed from a plane

which contains al] of the shear stress components, condition (1.7) is nothing

17



but a restatement of Rayleigh's criterion (centrifugal instability or inertial

instability). In this particular plane then, the disturbances are helically

symmetric. This idea which was first put forward by Pedley [14] has gained

widespread attention in recent years.

The results of [26] were extended by Stewartson [29] to include the

effect of viscosity. Using asymptotic analysis, Stewartson was able to show

that viscosity has a stabilizing influence which lowers the critical value of

_, below which all disturbances are stable; and the most unstable modeoccurs

at a finite value of n. He found that whenthe Reynolds numberRe >> 1, the

sufficiency condition (1.7) for instability holds and the most unstable mode

has -n = O(Re3/5). It must be emphasized that the results of [29] are valid

only in the limit of high Re.

Employing an asymptotic expansion, Stewartson and Capell [30] attempted

to delineate the mode-jumping and separate the higher modes in the case of

large n and :/n + I/_. They indicated (although not very convincingly) that

+ 0 as _/n + 1/_ for all modes. The analysis of [30] breaks down

completely for moderate values of the azimuthal wavenumber. In a follow on

paper, Stewartson and Brown [31] showed the existence of near neutral center-

modes (modes that are confined to the vicinity of r : O) for moderate values

of the azimuthal wavenumber, n. They reported that this instability exists

only in distinct intervals of the swirl parameter, _. As n changes, so do

the intervals. Since their analysis is valid for moderate values of n, it can

and should be checked with numerical calculations.

The conclusions of Leibovich and Stewartson [26] were confirmed by Duck

[32] using a rather different asymptotic expansion. He showed a more complete

description of higher unstable modes and his results indicate that the neutral

18



state is not attained but rather approached asymptotically. He obtained

results for negative n as large as -15, which are in good agreement with his

numerically conducted calculations.

It is hoped that this short literature survey has conveyed how difficult

it is to obtain the stability characteristics of swirling flows -- even in the

context of linear theory. Furthermore, it is the author's belief that the

message conveyed by this survey is the fact that any future stability

calculations should include the effects of viscosity. This was an important

consideration in the formulation of the problem in this study and it will be

shown later how fruitful the inclusion of viscous effects has been.
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Chapter 2

FORMULATIONOFTHESTABILITYPROBLEM

A normal modeanalysis is chosen for the stability calculations. In this

approach, the basic flow state is perturbed by infinitesimal disturbances and

the governing equations are then linearized with respect to these

disturbances. The perturbations are decomposedinto different Fourier modes

and, because the equations are linear, each mode can be studied

individually. It is further assumedthat the flow is locally quasi-parallel

and the mean velocity profile depends on the radial coordinate only. This

last assumption is justified based on the fact that there is no external

pressure gradient acting on the trailing line vortex. Viscous forces are

responsible for any changes along the vortex axis and for high Reynolds number

f_ow these changes are small over a wavelength. These assumptions are

explained _n more detail in the following sections.

2.1 MeanVelocity Profile

The similarity solutions for rotating porous pipe flows due to Donaldson

and Sullivan [33] are selected as the meanvelocity profiles. Their computed

profiles, which are exact solutions to the three-dimensional Navier-Stokes

equations of motion, show manyof the flow features which are of interest in

the study of unconfined trailing line vortices. For example, the solutions

range from those which can be characterized as a single cell vortex to

multiple cell vortices. In addition, experimental measurements have

documented the existence of flows with many of these characteristics (see
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Adams and Gilmore [34], Leuchter and Sol ignac [35], and Graham and Newman

[36]).

Cylindrical-polar coordinates (r, E), z) are chosen as the coordinate

system. Following Donaldson and Sullivan [33], the basic flow is taken to be

of the form

u = U(r)

V : V(r) (2.1)

W = z W(r)

where, U, V and W are the radial, tangential and axial velocities, respec-

tively. Note that the flow undergoes linear acceleration in the streamwise

direction which is required from continuity considerations.

The z-dependence of the axial velocity, W, indicated above is treated

using a quasi-parallel flow approximation. The approximation can be justified

on dimensional grounds using arguments similar to those employed by Donaldson

and Sullivan in their similarity analysis. Assuming that the axial coordinate

(z) has been made dimensionless by tube radius, Ro, and using a Reynolds

number, Re, based on tube radius, the axial velocity can be represented as

W(r, z) = 4 C _e f'(_)

2
r.

where _ = C _ is a similarity variable

0

represents a non-dimensional pressure gradient parameter, and

dimensional radial coordinate.

(2.2)

for the radial coordinate, C

r, is the

The maximum value for f'(_) in Eq. (2.2) is unity.

reference location, zo, is chosen as

Consequently, if a
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then

z = Re/4C, (2.3)
0

, = f'W(r Zo) (_) . (2.4)

At zo, the axial gradient of W(r, z) is given by

_W (r, Zo) = 4C f, = (2.5)

which is very small since flows of interest have high Reynolds number and C is

on the order of 0(1). The quasi-parallel flow assumption in the vicinity of

zo is therefore justified. For cases where z is small or where pressure

gradient rather than viscous forces are responsible for the z-dependence, one

can use a multiple-scale analysis to account for nonparallel effects (see for

example [37]). However, in this study, only the case of a 'quasi parallel'

basic flow is presented.

2.2 Governing Equations

The governing equations of motion in nondimensional form for a steady,

three-dimensional, constant density, Newtonian fluid (in cylindrical

coordinates) are written as

continuity

1 _ (r_) +--I _)___+a__: 0 (2.6)
r _r r _,e _z

r-momentum

--- _ r _)e _)z r _)r

_e _ 2 _)T (2.7)
+ [vZE- r-Z" r-_ Te]
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e-momentum

_-_ 5-F _-_-_+ _ --_z+
uv _ 1 5

r r _e

and z-momentum

+ 7 + (2.8)

_-C+E + +_ _)--EP+ _e v2_
5z

(2.9)

where

52 1 5 1 52 _2

V2 -7+---+ + .pSr r--'Z_--_e

Here, the nondimensionalization has been done with respect to the pipe radius,

Ro, centerline axial velocity, Wo, time scale, Ro/Wo, dynamic pressure

magnitude Po W2o' and Re is the Reynolds number based on Ro and centerline

velocity. The flow variables are assumed to consist of a mean part and an

infinitesimally small perturbation, i.e.

_= U+ u

_: V + V

W= W +w

(2.10)

p=TI+p .

Substituting Eq. (2.10) into the equations of motion (Eqs. (2.6-2.9)) and

neglecting the quadratic terms, we obtain the linearized small disturbance

equations
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continuity

5u + u + 1 5v 5w =
5--_F 7_+_ O, (2.11)

r-momentum

5u 5u dU V 5u
_+ U _-f+ u _F_+ 7-_+ W

5u 2Vv _ _p
5z r 5r

B-momentum

+ _ r52U 1 5u 1 02u 52u u 2 5v c2 2)

5v 5v dV V 5v 5v Vu vU

z-momentum

+ R_ [52v + 1 5v + I 52v 52v v 2 5u2 7+7 ] (2 3)

5w 5W 5w V 5w 5w 5W _ 5E
_+ u _F+ U-_-+ T_+ W _+ w 5z _z

1 5w 1 52w 52w] (2.14)
+ R_ [52w + T-_r'+ r2 +_

_r2 5e2 5z2 •

Since the coefficients of the perturbations in the above equations are

functions of r only, the disturbance quantities are assumed to have a helical

wave form :

{u, v, w, p} : {i F(r), G(r), H(r), P(r)} e i(_z+ne-mt) (2.15)

Here, F, G, H and P are the complex disturbance eigenfunctions, _ is the

wavenumber in the axial direction, n is the wavenumber in the azimuthal

direction, and m is the temporal frequency. In general, both _ and m are

complex variables. For a single valued solution, n must be an integer or
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zero. When n equals zero the disturbances are axisymmetric. When n is a

positive or negative integer, asymmetric perturbations exist which represent

different spiralling directions of propagation, depending on the sign of n/m.

= +i_.
If spatial stability is considered, then _ must be real and _ _r I

On the other hand, for a temporal solution, _ is assumed real and m = mr +

imi. In either case, the sign of the imaginary part indicates decay or growth

of the disturbance.

Substituting Eq. (2.15) into the governing equations (Eqs. (2.11-2.14)),

the linearized forms of the equations for perturbation eigenfunctions are

obtained. They can be written in the form:

continuity

F' + _ + n__G_+cH = 0 (2.16)
r r

r-momentum

i F" eST_-r---R-e-- + i [U - ] F' + [m + i drdU nVr _W

@-momentum

• (n2+I 2 [ i2n 2 2V
+ _-e -_--+ )] F + _--r] G +P'Rer = 0

(2.]7)

mll eFr --- R-e + [U - ] G' + [-i_ + inVr+ i_W + Ur

Ke _I- ( rn_+l + 2)] G + [i dV 2n iV inP
+ _?-+-----2-+-6-] F + - 0 (2.18)

Re r r
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z-momentum

li e_r ]- _+ [U - H' + [-ira + inV + i_ +r

_e n2 _W
+ (_+ 2)] H + i -_-p-F + i_P = 0

(2.19)

where primes denote differentiation with respect to the radial coordinate.

2.3 Boundary Conditions

The boundary conditions for a variety of flow configurations have been

given in detail in KMA. However, for the sake of completeness, they will be

explained here. The boundary conditions at the outer wall are very simple

since the perturbations must be equal to zero. In terms of the

eigenfunctions, these conditions are

F(1) = 0

G(1) = 0 (2.20)

H(1) = 0 .

Due to the singular nature of the coordinate system, and because all

physical quantities must be continuous and bounded on the centerline, some

non-trivial requirements exist as r ÷ O. There are essentially two ways of

treating this singularity. In one method, the entire pipe is treated as the

computational domain with -1<r<1. Hence, condition (2.20) is enforced at r =

± 1. However, in order to remove the centerline singularity, some parity

conditions must be enforced. The nature of these parity conditions and the

method of applying them are discussed by Metcalfe and Orszag [15], Leonard and

Wray [38], and Orszag and Patera [39]. The second method treats the radius,
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O(r<l, as the computational domain and hence the centerline is taken to be a

boundary. Then, the need arises for a new set of relations to be enforced on

the centerline. These compatiblity relations, given previously by Batchelor

and Gill [40], and formalized recently by KMA are

lira
--= 0 (2.21)

r*O _e

where V is the total velocity vector. This limit represents boundedness and

smoothness conditions on the solutions along the centerline. The second

approach has been employed in the present study.

In expanding this condition (Eq. (2.21)), we need to consider only the

perturbation part of the velocity since the mean flow is independent of the

azimuthal direction. Representing the perturbation velocity field by v, we

have

8e - 80 (u er + v e0 + w ez) (2.22)

or

lira b_
r+O bE)

bu + d_r bv _ + v due
--= _--Ger + u _"8--+ _--G e -d-6-

bw * d_z

+T_ez + wE_- • (2.23)

But
z

-0
de

d_ r ÷

ay -= e e

de e +
ae - er

(2.24)

(2.25)

(2.26)
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Substituting from Eq. (2.15), we deduce

lim _ er + (iF + inG) _e + inH ÷r÷O_ = (- nF - G) ÷ ez = 0 . (2.27)

In order for the equality to hold, each component of the resultant vector must

be zero. Summarizing, in the limit along the centerline (r = 0), we have

nF+G=O

F +nG = 0 (2.28)

nH=O .

The above conditions depend on the value of the azimuthal wavenumber, n, such

that

If n = 0 F(O) = G(O) = 0

and H(O) must be finite (2.29)

If n = .+1 F(O) _+G(O) = 0

and H(O) = 0 (2.30)

If Inl > I F(O) = G(O) = H(O) = 0 . (2.31)

In the case when Inl = I, two of the conditions become linearly dependent. In

KMA, another relation was deduced by enforcing the continuity equation on the

centerline, resulting in

2F'(O) + nG'(O) = 0 . (2.32)

However, after carefully examining the radial and azimuthal momentum equations

as r ÷ O, it can be shown that condition (Eq. (2.32)) is identica| to the

conditions
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F'(O) = 0 (2.33)

or

G'(O) = 0 . (2.34)

Therefore, in the present study, either Eq. (2.33) or (2.34) is used as the

appropriate boundary condition for Inl = I.
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Chapter 3

NUMERICAL METHOD

3.1 Introduction

Over the past two decades spectral techniques have emerged as primary

methods for solving hydrodynamic stability problems. The efficiency and high

degree of accuracy obtainable by using these techniques has been demonstrated

by others (see references [41, 15, 42, 43]). Very recently, KMA have applied

a spectral collocation (pseudospectral) method to a wide class of viscous,

incompressible swirling flows. In their method, the flow variables were

expanded in terms of a truncated Chebyshev series. The global eigenvalues of

the discretized system were then obtained by a generalized complex QZ [44]

routine. They have shown that the resulting algorithm is robust and easy to

implement while being efficient. The advantages of their method over similar

schemes are twofold. First, it is easily extendable to the case of

compressible fields, since the coefficients of the flow variables are always

evaluated in the physical space. Second, the use of the collocation

formulation greatly simplifies the implementation of any new basic flow or

coordinate transformation. The present study employs the same method, but

with one major modification pertaining to pressure boundary conditions.

The set of governing equations (2.16-2.19) are sixth order. Therefore,

the six boundary conditions derived in Eqs. (2.20-2.34) are sufficient for a

well posed boundary value problem. However, a straight forward

discretization, as employed in KMA, would result in a system which requires
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two artificial pressure boundary conditions. In KMA Neumann conditions were

prescribed on the pressure at tle two boundaries. This pressure gradient

condition is well known whenever the Navier-Stokes equations are solved in

primitive variables, and has been discussed by Orszag and Israeli [45]. The

prescribed values are obtained by taking the inner product of the vector

momentum equation with the normal to the boundary. In cylindrical-polar

coordinates, this turns out to be the r-momentum equation in its original form

evaluated at the boundaries. KMI_ have shown that this formulation is viable

and produces eigenvalues as accur_te as any other method. However, in recent

years it has become common to stagger the pressure cells or grid and eliminate

the need for the two artificial pressure conditions. This is the approach

taken here and is explained in detail in the next section.

3.2 Chebyshev Spectral Collocation for Staggered Grid

The unique properties of Che!)yshe_ polynomials have been known for many

years [46, 47]. Chebyshev polyn._mials distribute the error evenly, exhibit

rapid convergence rates with in(reasing numbers of terms, and cluster the

collocation points near the boundaries [148-50].

The kth Chebyshev polynomial, Tk(C), is defined on the interval (-1, I)

by

Tk(_ ) = cos[k cos-1_] . (3.1)

Because the spatial range in the _Jresent physical problem is (0, I), a simple

transformation is made from the physical variable, r, to the Chebyshev

variable via

= i - 2r (3.2)

3[



where

-i<_<i .

If

= COS ¢ ,

it can be seen that relation (3.1) becomes

Tk({ ) = cosk¢ . (3.3)

Next a staggered grid is constructed such that the velocity components

and the three momentum equations are evaluated at the cell faces, while

pressure and the continuity equation are enforced at the mid cell points. A

graphical representation of this grid is shown in Fig. 3.1. The velocities

are evaluated at the collocation points {j which are the extrema of the last

retained Chebyshev polynomial (TN({)) in the truncated series and are defined

by

= cos_- , j = O, 1, ..., N (3.4){j

where the centerline and outer wall boundaries, correspond to j equa]s 0 and

N, respectively.

An interpolant polynomial is constructed in terms of the values of the

flow variable at the collocation points by employing a truncated Chebyshev

series. As an example, we present expressions for

the other velocity components is straight forward.

for F(_) is written as

N

F(_) = Z gj(_) F(_j)
j=O

F(_) since extension to

An Nth order polynomial

(3.5)
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r=O
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j--1

1

1/2

0

Fig. 3.1 A schematic of the staggered

spectral collocation grid showing
locations where F, G, II and P are,
evaluated.

33



where the interpolant gj({) is

gj (_) -
(-1)j+1 (I - {_) T_({)

N2 Cj ({ - {j)

(3.6)

with

C0 = CN = 2, Cj = 1, (i < j < N-l) .

It can easily be shown that

gj ({k) = 6jk , (3.7)

where 6jk is the usual Kroneker delta. Next, the first and second derivatives

are determined explicitly by differentiating relationship (3.5). The

derivatives, evaluated at {j, are written as

dF I N: Z #'jk Fk
j k:O

(3.8)

d2F

d{2

N

= Z Bjk Fk
j k=O

(3.9)

j = O, 1, ..., N

where Fk is simply F({k), Ajk and Bjk

matrices and are given [50] by

C. (-I) k+j
- j

Ajk - Ck (_j - _k )

AO0 -

2(1 - _)

2N2+1
w

B

ANN

are the elements of the derivative

(j _ k) (3.10)
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and

BjN = Ajm Amk " (3.11)

Now the pressure and the continuity equation are evaluated at the collocation

points _j+I/2 which are the roots of TN(_) and are given by

= cos (2j+l) _ j = O, I, ..., N-I . (3.12)
5j+I/2 2N '

Note that this set of points does not include the two boundary points.

Next, the pressure is represented with an interpolating polynomial of

N-I (rather than N) degree. Therefore, we write

N-1

P(_) = Z hj(_) P(_j+I/2 ) , (3.13)
j:O

where the interpolant hj(_) is given as

(-I) j (sin ¢j+I/2 TN(_))

N (_ - _j+i/2 )
(3.14)

j = O, i,..., N-1.

Again, it can easily be shown that

hj(_k+I/2) = 6jk . (3.15)

At this time, two sets of interpolating matrices are needed to

interpolate from the staggered points to the grid points and vice versa. That

is

N

Fj+I/2 = Z Mjk Fk , (3.16)
k=O

j = O, I, ..., N-I ,
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and N-1
P =
J k=O

Mjk Pk+I/2 '

j = O, 1, ..., N ,

(3.17)

M*where the elements of the matrix are given as

2 /2)1/2. (-i) j+k+l (i - _j+l

Mjk - Ck N (_j+I/2 - _k ) ' (3.18)

j = O, 1, ..., N-I ,

k = O, I, ..., N ,

and that of M as

(-1) j+k (1 2 1/2- _k+1/2 )

Mjk = N (_j - _k+I/2 ) ' (3.19)

j = O, I, ..., N ,

k = O, 1, ..., N-I .

In order for M* to be a square matrix, an extra row (j = N) with zero elements

is added. Similarly in the case of M, a column (k = N) is added which

contains null elements.

In the case of the derivatives there are two different ways to

interpolate. In one method the explicit functions gj and hj are first

differentiated and then evaluated at the required points. Hence, the

derivative matrices can be constructed explicitly. An equally valid method is

to employ Eq. (3.16). That is, if

dF

d_
j+1/2

N

= Z Ajk Fk ,
k=O

(3.20)

j = O, I, ..., N-1 ,

36



then

A = M Amk•jk jm

Here we have used a mix of the two methods. That is, if

N-1 dhk(_ j )dP : Z d_ Pk+I/2 '
_-_ j k=O

j = O, 1, ..., N ,

(3.21)

(3.22)

then we employ

i N-IdP = Z
d{ j k=O

Ejk Pk+I/2 '

where the elements of E are given as

(3.23)

Ejk =

2 )1/2(-1) j+k+l (I - 5k+I/2

N (Sj - _k+i/2 )2

j : I, 2, ..., N-I ,

k = O, I, ..., N-I ,

(3.24)

2 1/2
(-I) k (1 - _k+i/2 )

Eok - N

N2

[(I - _k+i/2 )
i 2] ,

(I - _k+i/2 )

k = O, I, ..., N-1 ,

(-I) k+N (I - _2 )1/2 N2 I

k+i/2 [(i ]
ENk = N + _k+I/2 ) (I + _k+i/2 )2 '

k = O, 1, ..., N-I ,

A null column (k = N) is added to make E a square matrix.

Finally, if the scaling factor for transformation between the physical

and computational domain is given as
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= ;j :0, I, .... N,
Sj _ J

then the first derivative matrix, A, in the physical domain may be written as

Ajk = S.j Ajk (3.25)

and

Ajk = Mjm Amk, (3.26)

with similar relationships holding in the case of the mid cell points.

Employing all of the relations developed above, the governing equations

in discretized form are

continuity:

r-momentum:

N N

Z Ajk Fk + (i__ 2 ) Z Mjk Fk
k=O j+I/2 k=O

N N
2n *

) Z Mjk Gk + _
(i-_j+i/2 k=O k=O

+ (3.27)

N N
2

Bjk Fk + [_-__. Re Uj]
k=O 3 k=O

Ajk Fk

+ [i Re _- Re S dU I

Jd-_ jI

i2RenV
3

2(i 2ReV)
[ 4(2n) + j

(l-_j)2 l-_j

]G. +iRe
J

9
- i aRe W F - _ F. = 0

J J 3

N

k=O

n2+ i)

(4( )2 )] F
(1-_j J

Ejk Pk+I/2

(3.28)
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e-momentum:

°vI- [i Re Sj _ J

N

+

k=O

+ [i Re _- ___j

+ 4(2n) 2(iRe Vj)+

N

BjK Gk + [i-_- Re U ] Z AjK Gk- J k=OJ

2(i Re n Vj) 2(Re Uj) 4(n2 + _-_)] Gj

..... --T:-_-_--- (1-_j)

2 (i Re n) N 2
Mjk Pk+I/2 i m Re W. G - m G. = O,- j J J

1-_j k:O

z-momentum
N N

-i Re S _W1 F + Z Bjk Hk + [12_-_j - Re Uj] _.
J _ j J k:O k:O

2(i Re n Vj)

+ [i Re m l-_j

Ajk Hk

N 2

- i m Re W H - i _ Re _ Mjk Pk+I/2 - m
J J k=O

The boundary conditions are:

(3.29)

(3.30)

at C = i,

F(-I) = G(-I) = H(-I) = 0
for all n (3.31)

at _=I

Ifn=O F(1) = G(1) = 0

H(1) = 0
(3.32a)
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If n=+1 F(1)± G(1): 0

H(I)= 0

F'(1)= 0 or G'(1)= 0 .

(3.32b)

If Inl > 1 F(1) = G(1) = H(1) = 0 . (3.32c)

3.3 Numerical Scheme

The above equations are rearranged so that they can be represented in the

generalized eigenvalue format as

D_ = X L_ , (3.33)

where D and L are coefficient matrices obtained from the appropriate

discretized differential operator, and X is an eigenvalue. For the temporal

stability calculations,

and
T

"_:[F GHP] (3.34)

Both D and L are square matrices with dimensions of 4N+3. In the case of

temporal stability the last six rows of matrix D contain the boundary

conditions. Since the boundary conditions do not contain the eigenvalue _,

the submatrix in D containing these conditions was made upper triangular

through column operations. If all of the diagona| e|ements of this submatrix

are non-zero, it indicates that the boundary conditions are independent of

each other and the ranks of matrices D and L are reduced to 4N-3.

It should be noted that the eigenvalue coefficient matrix, L, is

singular. A procedure may be devised, using row and column operations, which

reduces the rank of the coefficient matrix and removes the singularity (see,
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e.g., Metcalfe and Orszag [15]). An alternative approach is to introduce a

term _Pj+I/2 in the continuity Eq. (3.27). This additional term makes the

coefficient matrix for _ non-singular and may be termed an artificial

compressibility factor (see Malik and Poll [51]). Both methods were employed

in KMA and it was found that computations using the method of artificial

compressibility of Malik and Poll were at least one and one half times faster

than the matrix operations of Metcalfe and Orszag [15], and both produced

identical eigenvalues. Therefore, only the artificial compressibility

approach is used in the present work.

The artificial compressibility parameter, #, is assigned a very small

value (on the order of 10-18). This term generates large values for some of

the eigenvalues of the matrix L-ID; however, experimentation with the value of

demonstrated that for values less than 10 -9 its effect on the desired

(physical) eigenvalues is negligible.

The general complex eigenvalue solver employed in the global calculations

is the IMSL QZ routine called EIGZC. If the eigenfunctions are desired the

eigenvalues are refined and the eigenfunctions are obtained subsequently using

a local method. The local method which was employed here uses an inverse

iterative technique (see Wilkinson [52]). The discretization of the governing

equations for the local method is spectral but non-staggered. It was found

that the eigenvalues obtained by the local procedure always converged to eight

or nine significant digits within four iterations. Furthermore, it was found

that both methods produced eigenvalues which agreed with up to six digit

accuracy.

All of the numerical solutions reported here were obtained on the CDC

CYBER 860 and CYBER 205 machines at NASA Langley Research Center.
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Chapter 4

TESTCASES

4.1 Introduction

The convergence and accuracy of the non-staggered Chebyshev spectral

collocation method has been tested extensively through numerous test cases in

KMA. However, it is still desirable to obtain the convergence behavior of the

staggered representation to contrast it with the non-staggered or tau

formulation. The viability of the present method is examined here through two

widely different flow configurations; namely Poiseuille flow in a pipe

(confined flow) and for a Batchelor's type vortex (unconfined flow). In each

case, numerous results have already been reported by others which greatly

simplifies the comparison task. It must be emphasizedthat the objective here

was not to duplicate all of the previous work, but rather to show briefly the

efficiency and accuracy of the staggered collocation formulation. However,

for one of the flows (Batchelor's vortex) where somequantitative differences

with previous results were obtained, it will be necessary to explain the

discrepancies.

4.2 Temporal Stability of Poiseuille Flow in a Pipe

The meanvelocity for this problem is the well knownprofile given by
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U=O

V : 0 (4.1)

W=1-r 2 .

The linear stability of Poiseuille flow in circular pipes subjected to

azimuthally varying disturbances has been studied by Lessen, Sadler and Liu

[53]. Using a shooting method, they found no instability for the n = 1

perturbations. Two of their eigenvalues are tabulated in Table 4.1, along

with the results of the present calculations. The results from the two

methods agree very well. Next, the variation of the least stable modewith

Reynolds number was obtained. A comparison of these results with those of

Salwen, Cotton and Grosch [54] is given in Table 4.2. The agreement is

excellent.

The convergence behavior of the present method as compared to the

Chebyshev tau formulation of Metcalfe and Orszag [15] and the non-staggered

method of KMA is presented in Table 4.3. It is clear that Chebyshev

collocation (in either form) has a muchbetter convergence rate than that of

the tau method. However, there is hardly any difference between the

convergence rate of the two collocation formulations. This fact suggests

that, contrary to prevailing opinion, when the artificial pressure boundary

conditions are employed correctly they do not affect the accuracy or the

convergence rate of the spectral methods.

Although not reported here, the two collocation methods have been

compared for a variety of other flows. In each case, both methods produced

identical results up to seven or eight significant digits.
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Table 4.1 Comparisonof the First Eigenvalue Predicted by
Lessen et al. [53] with those Using Chebyshev
Collocation

n

1

1

1

Re

2OO

2200

2200

Lessen et al. [53] Present Method

Cr Ci Cr Ci

0.645 -0.129 0.64526 -0.129205

.... 0.067 0.39797 -0.067709

...... 0.89663 -0.048114
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Table 4.3 The Convergence Behavior of the Two
Modes for Poiseuille Flow in a Pipe.
of polynomials used to resolve each
Here, Re = 10, _ = I, and n = 1.

Least Stable
N is the number

flow variable.

N

8
12
16
20

8
12
16
2O

8
12
16
20

Metcalfe and Orszag [15], Chebyshev Tau Formulation

0.501654048-i1.392398524
0.491070208-ii.393534481
0.491063984-ii.393490921
0.491064084-ii.393490894

0.780474345-i2.745100739
0.763978453-i2.807040555
0o762026865-i2.807291233
0.762024215-i2.807286430

Present Calculations, Staggered

0.491065536-ii.393490713
0.491064085-i1.393490894
0.491064084-ii.393490894
0.491064084-ii.393490894

Chebyshev Collocation

0.762034238-i2.807291149
0.762024225-i2.807286425
0.762024223-i2.807286422
0.762024223-i2.807286422

KMA, Non-Staggered Chebyshev Collocation

0.491067022-ii.393495866
0.491064084-i1.393490896
0.491064084-i1.393490894
0.491064084-ii.393490894

0.762035973-i2.807301022
0.762024226-i2.807286427

0.762024223-i2.807286422

0,762024223-i2,807286421
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For Poiseuille flow, 16 Chebyshev polynomials were required for eight figure

accuracy. The number of polynomials, N, depends on the particular mean flow,

and between 32 and 70 polynomials were used in the present study to insure

convergence.

4.3 Temporal Stability of a Trailing Line Vortex

The approximate asymptotic form of the solution for the mean velocity

profile of a Batchelor's vortex [24] is

U= 0

V : _ [I - exp(-r2)]
F (4.2)

WI 2)
W = _22 + expI-r •

where the azimuthal and axial velocities, have been normalized with respect to

W2, which is the difference between the centerline velocity and the far field

velocity. The quantity, q, in Eq. (4.2) has been called the swirl parameter

by Lessen et al. [24] and is related to the ratio of the maximum swirl

velocity to the maximum axial velocity excess (or defect)*. Throughout the

WI

present study, it is assumed that W2 I and therefore

W = I + exp(-r 2) . (4.3)

The two components of the mean velocity profile are shown in figure 4.1. It

has been pointed out by Lessen et al. [24] that the uniform part of

If q
then

is the ratio of maximum swirl velocity to the maximum axial velocity,
q = 0.639 _ in this case.
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the flow in Eq. (4.2) only affects the frequency and not the growth rate of

the disturbance.

Since r varies between zero and infinity, it is necessary to map the

coordinate system into a Chebyshev (computational) domain. An algebraic

transformation given by Malik, Zang and Hussaini [55] is employed in the form

^ I + _ (4.4)
r=a___

For any arbitrary value of a, b is uniquelywhere a and b are constants.

determined by

A

b : i +___2a . (4.5)
r
max

^

It should be noted here that parameter, a, is very significant and that the

above transformation concentrates at least half of the collocation points

between r = 0 and r = a. Throughout this study, the values of a and rma x were

fixed at 3 and i00, respectively. The convergence behavior of the transforma-

tion (Eq. (4.4)) is fu]ly explained in Grosch and Orszag [56] and KMA. Also

^

the tests conducted for the selection of a and rma x have been discussed in

detail in KMA and will not be repeated here.

Figure 4.2 shows the variation of the growth rate of the first three

unstable modes with the axial wavenumber, _, for n = -2, and _ = 0.8, at a

Reynolds number of I0,000. The curves are identical to the ones resulting

from the inviscid calculations of Duck and Foster [19]. Since the present

viscous calculations produce identical eigenvalues to those of Duck and

Foster, it is logical to assume that the instabi]ity is an inviscid one. This

would imply that the number of unstable modes depends directly on the number

of collocation points as noted by Duck and Foster. However, that conclusion

does not appear to be consistent with experiments, and further results in the
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present study will shed some light on this problem.

finer resolution is needed to resolve higher modes.

corresponds to that found by Lessen et al. [24].

part of the frequency (_r) vs _ is shown in

As pointed out by [19],

Note that the first mode

The variation of the real

figure 4.3. The curve

corresponds to mode 1 in the previous figure. Since the other two modes have

real parts which are nearly identical with the one shown, they are not plotted

for clarity. The variation of growth rate vs axial wavenumber for the case of

n = -1 is shown in figure 4.4. The calculations were made at Re = 10,000, _ =

0.4 and only results for the first three modes are plotted. Again, the

primary mode corresponds to the inviscid mode obtained by [24]. The mr cor-

responding to this mode is plotted in figure 4.5. Next, the variation of the

first two modes with Reynolds number for the case of n = - 2 at two different

values of _ are shown in figures 4.6 and 4.7. It is apparent from these plots

that they are indeed inviscid modes for Reynolds numbers above 10,000, since

they have almost attained their maximum growth rates and are virtually

independent of Re. In the case of n = +2, no instability has been observed.

Although the results shown in figures 4.8-4.10 confirm this fact, figure 4.10

indicates that as Reynolds number increases, the flow approaches a marginally

stable condition for this azimuthal wavenumber.

Even though the Batchelor vortex was chosen primarily as a test case to

evaluate the staggered collocation method, new insights and some fundamental

results have been produced. The fundamental results are related to the

identification of new viscous instability modes and were produced during the

testing. Before presenting the discussion of the new results, as mentioned in

Sec. 4.1, it is important to explain some discrepancies which exist between

this study and earlier work.
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Recently, results were reported in KMA which indicated that although

qualitative agreement exists between the collocation method and the viscous

calculations of Lessen and Paillet [27], there are quantitative disagreements.

The disagreement is shown in figure 4.11 (taken from KMA) which presents the

variation of _i' with the swirl parameter q. Of interest is the existence

of a second mode of instability which was not obtained by [27]. The staggered

collocation method employed here has confirmed KMA's earlier findings and

their two curves shown in the figure were reproduced identically. The above

result indicates that these inviscid higher modes exist at much lower Reynolds

numbers than had been expected. A further test was conducted in which the

critica| values, given by Lessen and Paillet [27], were used as input for the

present method and _i was calculated. The results are tabulated in Table

4.4. It is clear from the magnitude of _i's that the values taken from [27]

are not very close to the critical point. In order to show the accuracy

obtainable by the collocation method, the critical value for the axisymmetric

case is presented in Table 4.5. After careful examination, it was determined

that the discrepancies are only with the viscous results of [27]. The

inviscid calculations of Lessen et al. [24], which employed similar methods to

those used in the later viscous analysis, are consistent with the collocation

results. The discrepancy can be explained by a detailed examination of the

approach taken by Lessen and Pail|et.

Starting the solution at r = 0 with a Frobenius series and at r = rma x

with an asymptotic solution, Lessen and Paillet [27] integrated from both

limits using a Taylor series expansion and matching the solutions at some

intermediate radius. They mentioned that the results were strongly dependent

on the radius of integration, rma x as wel] as the intermediate matching

condition. The dependency of the eigenvalue on rma x has been demonstrated by
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Table 4.4 The Critical Values of _i Obtained by the Present
Method for Different Azimuthal Wavenumbers. The

Critical Values for Rec, _c' _ were Taken from Lessen
and Paillet [27].

n _c qc Rec mi

-I 0.42 0.45 13.9 -0.002547

-2 0.91 0.70 27.9 -0.029787

-3 1.62 0.95 48.2 -0.05455

Table 4.5 Critical Values of Different Parameters

for the Axisymmetric Case n = O.

:c Rec qc

0.468 322.35 1.08 0.441679-i4.97x10 -7
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further testing. Table 4.6 showsthe variation of the maximumgrowth rate for

different azimuthal wavenumber,n, as comparedwith the inviscid calculations

of [19, 24]. Rememberthat the values of Re apply only to the present viscous

calculations. The results obtained by the present method indicate very good

agreement with those of [19, 24]. In the case of n = - i, as the Reynolds

number increases, the convergence of the eigenvalue toward the value obtained

by the finite difference global method of Duck and Foster [19] is excellent,

while it is acceptable with respect to that of [24]. Duck and Foster [19]

have indicated that for n = -I, they had to go to larger values of rmax such

as I0 or 12 in order to obtain convergent results. The present result was

obtained with rmax = I00, which is much larger than their rmax, and

substantiates their findings. Finally, the dependencyof the eigenvalues on

rmax is clearly demonstrated in the work of Paillet [57] and was recently

confirmed by Lessen (private communication).

It is well known that in the previous stability calculations of the

Batchelor vortex, axisymmetric instability was not observed. However, while

conducting someroutine calculations in the present study, two new modes of

instability were discovered. One instability modewas an axisymmetric, n = O,

mode and the other was an asymmetric, n = I, mode. Both are viscous modes.

Figure 4.12 shows the variation of growth rate, _i with _ for n = O, q = 1

and Re = I0,000. The figure indicates that this modehas a growth rate which

is orders of magnitude smaller than the inviscid modes. The maximumvalue

of _i occurs roughly at _ = 0.3 which suggests that the disturbance's

wavelength is on the order of the core radius of the vortex. The variation of

the real part of the frequency with _ is plotted in figure 4.13. The nearly

straight line indicates that the axial phase speed of the wave, Cr = _r/C, is

constant and equal to unity over a wide range of _. Variation of _ vs
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Tab|e 4.6 Comparison of Maximum Growth Rate for
Different Azimuthal Wavenumber.

Re _max _max

Inviscid Inviscid
Lessen Duck and

et al. Foster

[24] [19]

Present
Method

20000 -I 0.3 0.32

100000 -1 0.3 0.32

20000 -2 1.2 0.70

50000 -2 1.2 0.70
100000 -2 1.2 0.70

100000 -3 1.7 0.79

100000 -4 2.15 0.82

0.1470 0.14955 0.14904

0.1470 0.14955 0.14935

0.3138 0.31392 0.31274

0.3138 0.31392 0.31332
0.3138 0.31392 0.31352

0.3544 0.35462 0.35404

0.3777 0.37754 0.37687
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Reynolds number are presented in figures 4.14 and 4.15, for two distinct

wavenumbers. As the Reynolds number increases, the disturbance attains its

maximum growth rate very rapidly and then drops gradually. The maximum of _i

shifts to higher Re as _ increases and there is a significant drop in its

magnitude. Figure 4.15 shows that the phase speed is constant over a wide

range of Reynolds number and has a magnitude which is slightly less than the

uniform outer flow. The variation of the wavenumber of the maximum growth

rate with Reynolds number is shown in figure 4.16. The curve is consistent

with the behavior of a viscous mode and shows the damping effect of viscosity

on the wavenumber at moderate Reynolds numbers. Finally, the critical values

are compiled for the different control parameters for this axisymmetric mode

in Table 4.5.

The axisymmetric mode just described has been observed in many

experiments and photographs of many contrails of commercial aircraft.

Although the phenomena is termed "core bulging" or "core bursting" in the open

literature, the present author believes that is a misnomer since the phenomena

is traveling outside the core and the core remains intact. This fact is

demonstrated in the photographs shown in figures 4.17-4.19. These photos

which are contrails of a large commercial aircraft were reproduced from the

work of Bisgood [58]. They were taken from the ground with the vortices at

heights between I0,000 and 12,000 meters. The separation distance between the

vortices was between 25 and 40 meters. Figure 4.17 shows clearly that, while

axisymmetric instability waves are present, the core still remains intact.

The next two photos (figures 4.18 and 4.19) show the amplification and growth

of these waves. It must be emphasized here that these photographs are not

sequential and might not even be the same contrails. However, of importance

here is the presence of the Crow [59] instability in every photo. It seems
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that the two forms of instability (core bulging and Crow) do not interact

significantly. This fact was established recently by Sarpkaya and Daly [60]

who found that any combination of the instabilities might occur.

Figure 4.20 is another photograph which has been reproduced from the work

of Bisgood [58]. Sarpkaya's finding can be supported by this picture which

shows Crow's classical "sinuosities" mode without any sign of the axisymmetric

wave form. Until further research is carried out, further comments on the

nature of the interaction between these two distinct forms of instabilities

are speculative and therefore unjustified.

The core radius where the azimuthal mean velocity reaches its maximum is

approximately at r = 1.1. In order to substantiate the fact that the

axisymmetric wave is occurring just outside of the core of the vortex, one has

to look at the perturbation eigenfunctions. Figures 4.21a-4.21h represent the

eigenfunction amplitudes and phase angles for all of the perturbation

components near their critical values. The eigenfunction amplitudes have been

normalized by the maximum amplitude of the azimuthal eigenfunction throughout

this study. Figures 4.21a and 4.21c are significant and show clearly that

most of the perturbation energy in the radial and azimuthal directions is

spread over a wide distance and is mostly outside of the core. However, there

is hardly anything happening beyond r = 10. The phase p|ot for G in figure

4.21d suggests the existence of a critical layer just outside of the core at r

= 1.5. A similar critical layer exists in the case of the axial perturbation

(figure 4.21f); however, it is positioned inside of the core radius at a

distance of about r = 0.7. This is understandable since the mean axial

velocity has an inflectional point close to r = 0.75.
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The variation of the growth rate, mi, with the axial wavenumber, m, for

the asymmetric mode n = 1, is plotted in figure 4.22 with _ = 0.4 and Re =

10,000. Of the two modes shown, the second mode is stable. The first mode

has a growth rate comparable to the axisymmetric wave but is unstable over a

smaller range of m. However, like the n = 0 case, it is basically a long

wave instability. The variation of maximum growth rate of mode I with _ is

shown in figure 4.23. The maximum occurs at _ : 0.34. The variation of mr

with _ for the first mode is presented in figure 4.24. The nearly linear

variation indicates that the axial phase speed of the wave is slightly greater

than unity and, like the axisymmetric case, is traveling with the uniform

outer mean flow, although it is a bit closer to the core of the vortex. This

form of instability has been observed experimentally both in wind tunnel

measurements and contrail photos. The measurements of Singh and Uberoi [61]

and Strange and Harvey [62] support the existence of an asymmetric disturbance

which has an axial wavelength on the order of the core radius. Furthermore,

the photograph of condensation trails behind a wide-bodied jet shown in [62]

(their Fig. I) clearly displays the existence of helical disturbances which

co-exist along with the Crow instability. The viscous nature of the n = 1

mode is shown in figures 4.25 and 4.26. The variation of growth rate mi

with axial wavenumber, m, shows similar behavior to that of the n = 0

disturbance. However, in this case, the instability occurs at much lower

Reynolds numbers. Also the maximum growth rate which occurs at Re : 60 is an

order of magnitude greater than the mimax for the n = 0 case. But the most

interesting phenomenon is the behavior of these two instabilities at high

Reyno|ds numbers. While the asymmetric mode is the stronger of the two

instabilities at low Reynolds numbers, as Re increases above 104 , the

axisymmetric disturbance becomes the mode with the higher growth rate. This
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may be why, in most of the contrails behind large commercial jets (which occur

at high Reynolds numbers), the axisymmetric mode is the dominant and

persistent form, while in wind tunnel tests, which are conducted at much lower

Reynolds numbers, both modes are present equal|y. The amplitudes and the

phases of the disturbance eigenfunctions are presented in figures 4.27a-4.27h.

Remember that disturbances having Inl = I are the only ones with non-zero

radial and azimuthal velocity on the centerline. This fact is clearly

demonstrated in figures 4.27a and 4.27c. Although the peaks occur on the

centerline, a considerable amount of the perturbation's energy is just outside

of the core. This feature was explained earlier when discussing the axial

phase speed of the wave. Figure 4.27e shows the variation of the perturbation

amplitude in the axial direction with radial distance. The peak is positioned

just inside of the core with a significant part of the perturbation imme-

diately adjacent to the outer part of the core. The overall observation of

the eigenfunctions indicates that this instability is much tighter in radial

extent than that of the n = O, disturbance. A significant point to be made

here is the fact that, unlike inviscid modes, no higher unstable modes were

found for either the axisymmetric or asymmetric form of instability. This was

tested extensively by going to successively higher values of N (number of

Chebyshev polynomials) than the number needed to obtain convergence. This

point has to be explored further.

Much work needs to be done with regard to documenting these two new

viscous modes of instability. Of particular importance is the variation of

the perturbation quantities with respect to the swirl parameter _. However,

neither space nor time allows for such an extensive study here (Recall that

this was only to be a test case for calibrating the numerics.). A more

detailed study should follow in the near future and will be reported

elsewhere.
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Finally, before concluding this chapter, two important facts related to

the discovery of the new viscous modes are:

. Batchelor's vortex represents a good approximation to

trailing line vortices and can be employed for further

stability studies.

. Although the stability calculations were conducted for a

laminar vortex, the excellent agreement obtained with

experimental measurements and contrail photos, which

involve mostly turbulent vortices, indicate that these

long wave viscous instability modes, once activated, do

not interact significantly with the surrounding turbulent

field and are not influenced strongly by the magnitude of

the scaling parameters.
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Chapter 5

RESULTSANDDISCUSSION

In this chapter, the results obtained using the three-dimensional

profiles of Donaldson and Sullivan [33] are presented. Due to the wealth and

variety of solutions possible from their compilation as well as constraints on

computer resources and time, representative velocity profiles had to be

chosen. In each case, care was taken to insure that the selected profiles

approximated trailing line vortices as closely as possible. In section one,

the stability of a single cell vortex is studied. The second section contains

the results for a comprehensive study of a two cell vortex. The third section

is devoted to the case of a three cell vortex which is studied less

extensively than that of a two cell vortex. Except in the case of the three

cell vortex where the effect of high values of azimuthal wavenumber,n, on the

stability characteristics were obtained, the calculations are limited to n =

O, ±1, and ±2.

Before proceeding further, two points need to be emphasized. First,

unless specified otherwise, the axial gradient term, @, as defined in Eq.

(2.5), is included in the governing equations even though all of the

calculations are conducted at high Reynolds numbers. It wil| be shown that

although the effect of this term on the modes with negative n is negligible,

it causes drastic changes in the case of positive azimuthal wavenumbers.

Secondly, rather than using q (as defined in Eq. (4.2)) the alternate

parameter, q, which is defined as the ratio of the maximum swirl velocity to
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the centerline axial velocity, has been used to delineate the stability

characteristics.

As mentioned in the introduction, in the case of swirling pipe flows, the

existence of center- as well as wall-modes of instability has been established

by previous research efforts. In addition, previous investigations have

identified ring modesas those which occur at some intermediate radius. This

investigation has shownthat compoundinstability modeswhich will be ca|led

co-instabilities occur for many types of swirling flows. The results of the

present work show, for the first time, cases where center instability modes

coexist with wall modes and/or with ring modes, as well as other

combinations. These different types of compound instability modes will be

described as they occur. It is obvious here that mode identification has

become a confusing and complex matter. Originally, the word "mode" was used

to separate disturbances having different azimuthal wavenumbers. The

discovery of higher modes associated with each negative value of n and now the

presence of center-, ring- and wall-modes of instability has created an

untenable situation. Thus, to simplify the text (and stop repeating "mode"),

from here on center modes will be indicated by C, ring modes by R and wall

modes by W. Therefore a combination of a center mode and a ring mode is

identified as C R with similar identification applying to any other

combinations. The word mode will be used only in its original context, that

is to represent a specific value of the azimuthal wavenumber and the higher

modes associated with that particular value.
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5.1 Stability of a Single Cell Vortex at Re = 4000

The three components of the velocity profile associated with this vortex

are shown in figure 5.1. The radial variation of the azimuthal velocity V,

presented in figure 5olb, is identical to that of an unconfined trailing line

vortex. The variation of the growth rate with axial wavenumber for an

axisymmetric disturbance (n = O) is shown in figure 5.2 for q = 0.19 and

1.0. No sign of instability was observed. Furthermore, as _ increases the

flow becomes more stable. The variation of _r with _ is presented in figure

5.3. It seems that for q = 1.0, the axisymmetric mode is almost stationary.

This is in accordance with the criterion (Eq. (1.6)) obtained by Ito et al.

[21]. The effect of Reynolds number on the axisymmetric mode at q = 1.0 is

presented in figures 5.4 and 5.5 for _ = 1.0 and 0.3, respectively. Although

the flow becomes less stable as Re increases, an unstable state is never

reached.

The variation of the growth rate with _ for the asymmetric mode (n = i)

is shown in figure 5.6 for q = 0.8 and 0.4. The flow is clearly stable and

becomes more stable as _ increases. The real part of frequency versus axial

wavenumber is plotted in figure 5.7. The calculations for the case n = 2

produced similar results, showing mainly that this profile is highly stable

with respect to the modes having n > O; at least for the range of parameters

studied here. The above conclusion has been reached in the case of inviscid

disturbances for Long's vortex by Foster and Duck [23].

Figure 5.8 shows the variation of the growth rate, _i' with _ associated

with the asymmetric mode n = -1, for q = 0.4. Similar to the case of a

trailing line vortex, the instability is a very explosive one with higher

modes present. Here, only the two most unstable modes are plotted for
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clarity. However, there are at least two major differences between this

instability and the one associated with Batchelor's vortex. First, this

instability exists at higher axial wavenumbers,_. Second, both stability

modes show evidence of co-instabilities. That is, lobes are apparent on

either side of _ = 0.7. Varying _ does not show co-instabilities directly,

and in fact, co-instabilities could exist when growth rate curves show no

evidence of unusual behavior. It is important to note that change near _ =

0.7, suggests a shift in the dominant type of instability. Furthermore, it is

noted that the stability curves in this figure are similar to the trailing

line vortex curves shown in figure 4.4, for 0 < _ < 0.7. The co-instabil-

ities were checked by looking at the eigenfunctions of the disturbance at

several values of c. That study of eigenfunctions revealed that this indeed

was the case, which pointed to a disturbance having a very complex structure

with several peaks in its amplitude.

The possibility of coexistence of several different modes was first

mentioned in the work of Leibovich and Stewartson [26]. Subsequently, it was

shown in the inviscid asymptotic analysis of Duck [32] that, for large

negative n, there are two critical layers associated with the Batchelor's

profile. He showed that the peaks in the disturbance eigenfunction are

situated near these critical points (incidentally his eigenfunction curves

show this multiple peak phenomena, but only for the higher modes, with no such

effect for the primary mode). In the case of small negative n, Duck has

stated that there is only one critical layer in the flow field. Depending

upon the value of c, multiple peaks in the eigenfunctions for the single and

multiple cell vortices do exist in the present calculations. We will discuss

this later in the context of two cell vortices. There we will show that the

peaks in the eigenfunctions could be used to distinguish the type or types of

modes present (namely center, ring and wail modes).
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Wewill also discuss this co-instability feature in detail for the more

interesting case of a two cell vortex. Setting @= O, the calculations were

repeated and the results are plotted in figure 5.9. A comparison of figures

5.8 and 5.9 indicates that the effect of the axial gradient term, @, is

negligible. Actually, this turned out to be true (in the case of single cell

as well as multiple cell vortices) whenever n < O. lhe changes in _r with

_, for the two modesshown in figure 5.8, are plotted in figure 5.10. Notice

the kink in the higher mode curve which occurs roughtly at _ = 0.7. The

inviscid nature of the asymmetric mode, n = -1, is revealed in figure

5.11 for q = 0.4 and _ = 1.0. The behavior is very similar to the trailing

line vortex case presented in figure 4.6. As the Reynolds number increases,

the growth rates, _i' increase very rapidly and asymptote to constant

values. In fact, in the case of the primary mode at Re = 4000, the inviscid

value of the growth rate is almost achieved. The variation of the real part

of frequency, _r' with Re is shown in figure 5.12. Variation in the real

part of _ over a wide range of Reynolds numbers is small. The effect of

higher swirl on the growth rate of the asymmetric mode (n = -1) is presented

in figure 5.13. At q = 0.8, the lobe in the higher mode has disappeared while

primary mode "splitting" has become more acute. There is a substantial

increase in the growth rate of the first mode, particularly at higher values

of axial wavenumber, c. The variation of the real part of the frequency

with _ for this disturbance is shown in figure 5.14 for q = 0.8. Notice the

shift in the _ of the first mode (which results in the kink) even though
r

the two distinct sections of the curve have similar slopes.

The behavior of the growth rate with _ for disturbances having n = -2 is

shown in figure 5.15 for q = 0.8. Here, the peaks associated with the lower

values of the axial wavenumber are the dominant ones. Overall the growth rate
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indicates a twofold increase over the values of mi for Batchelor's vortex

(figure 4.2). Also, the instability presists over a much larger range of the

axial wavenumber, _. The problem of mode identification, as pointed out by

[26], is demonstrated in figure 5.16. Note how closely the two curves follow

each other. In fact, as the neutral curve is approached, the real part of

both frequencies become indistinguishable when they are displayed

graphically. However, contrary to the remarks made by Leibovich and

Stewartson [26], at no time did we encounter difficulties with the convergence

of the first few eigenvalues. Rather, the difficulty is caused by the

successively smaller increments of _ needed to follow the same eigenmode.

This in turn would make global calculations very expensive rather than

impossible.

The variation of the growth rate with Re for the n = -2 mode at q = 0.8

and _ = 2 is presented in figure 5.17. Clearly the instability is an

inviscid one. The real part of the frequency, shown in figure 5.18, indicates

little variation with Reynolds number, especially at high Re.

5.2 Stability of a Two Cell Vortex at Re = 10000

The three components of the velocity profile are shown in figure 5.19.

Again, note the similarity between the azimuthal velocity profile to that of a

trailing line vortex. Also there is an inflectional point in the axial

component of velocity between r = 0.6 and r = 0.8. The variation of growth

rate with axial wavenumber for the axisymmetric mode (n = O) is shown in

figure 5.20, for q = 0.5 and 1.0. Obviously, increasing the swir] has a

destabilizing influence. However, the surprising effect here is the enormity

of the growth rates obtainable with this mode. In fact, the maximum growth

rate is orders of magnitude larger than the viscous mode of the Batchelor's
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vortex. No axisymmetric mode of instability has been reported previously

(regardless of whether the vortex was single cell or multiple ceil) and the

explosive growth rates make this discovery even more significant.

The question that had to be answered concerning the axisymmetric

instability was whether it was caused by the multiplicity of cells in the core

or as a natural manifestation of the solid pipe wall boundary condition which

is absent in the case of a trailing line vortex in an infinite domain.

Figures 5.21a through 5.21d represent the eigenfunctions associated with this

instability. For the sake of space, we will show only the amplitudes in this

section. In figure 5.21a, it is shown that wall presence has resulted in a

second peak in the radial component of the eigenfunction. A similar situation

exists for the axial component of the eigenfunction except that the magnitude

of the peak close to the wall is much less than that of the center peak.

However, based on the shape of the eigenfunctions close to the centerline, the

similarity between this mode and the axisymmetric viscous mode of Batchelor's

vortex is striking. Overall this is a C type disturbance with most of the

perturbation energy being concentrated near the centerline. The variation of

_r with _ for the axisymmetric disturbance is presented in figure 5.22. It

must be mentioned that the effect of setting _ equal to zero on this mode was

negligible. The variation of _i with Reynolds number for q = 1.0, and _ = =

2.0, is displayed in figure 5.23. The growth rate increases as Re increases,

attaining its maximum value at moderate Reynolds numbers and then asymptoting

to a constant value or dropping slightly. This mode clearly is an inviscid

one. The variation of _r with Re is shown in figure 5.24. The curve is

almost a straight line with constant slope.

Figure 5.25 shows the variation of _i with _ for an asymmetric mode (n =

1) with q = 0.4. The first mode, which has much larger growth rates, is a
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short wave instability while the second modeexists only at the low end of the

wavenumberspectrum (long wave instability). The effect of setting _ = 0 on

these modes is presented in figure 5.26. While there is hardly any change in

the primary mode, note the significant drop in the growth rate of the second

mode. The term associated with _ represents the non-parallel effect in the

velocity profiles of Donaldson and Sullivan [33]. The second mode is

displayed in more detail in figure 5.27. The instability is clearly a long

wave instability. Note that at this particular value of the Reynolds number

(Re = 10000) the growth rates are orders of magnitude higher than the n = 1

viscous mode associated with the trailing line vortex represented in figure

4.25. The real part of frequency of the second mode is presented in figure

5.28. The variation of _r with _ is linear. It was found that _r did not

vary with @. Setting @ equal to zero, the eigenfunctions of the first and

second modes were obtained. The eigenfunctions associated with the second

mode (at c = 0.2) are displayed in figures 5.29a through 5.29d. The

resemblance between these curves and the eigenfunctions for the asymmetric

viscous mode of the trailing line vortex (figures 4.27a-4.27h) is striking.

The only observable difference is the position of the peak in the axial

component of the eigenfunction. Here the peak occurs close to r = 0.7, which

is natural since, as mentioned earlier, the inflectional point in the axial

component of mean velocity is situated very close to this value of r.

However, the second mode is basically a C type perturbation. The eigenfunc-

tions of the first mode (at _ = 2.5) plotted in figures 5.30a through 5.30d

revealed the existence of co-instability even though the growth rate curve

does not show any multiple peaks and is smooth. At this value of _, the

perturbation is a C R W type. Notice how different the structure of this

disturbance is when compared to that of the second mode even though both have
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the same value of n. The behavior of the growth rate at a higher value of q

for the n = i disturbance is presented in figure 5.31. The primary mode

indicates a slight damping effect. Figure 5.32 shows how mr of the primary

mode varies with the axial wavenumber for q = 0.8. The inviscid nature of the

first mode at q = 0.8 and _ = 2.5 is shown in figure 5.33. The growth

rate, mi, drops slightly as Re increases. However, calculations at much

higher values of Re are needed to determine the asymptotic value of the growth

rate, m.. The variation of the real part of frequency with Reynolds numberi

is presented in figure 5.34. There is considerable change in the magnitude of

mr over intermediate values of Re. The behavior of the second mode at this

higher value of swirl parameter (q = 0.8) is displayed in figure 5.35. The

higher amount of swirl has resulted in higher growth rates as well as

increasing the range of axial wavenumber, _, where instability exists.

However, the instability still is a long wave one, The real part of frequency

of the second mode varies very rapidly with _ as shown in figure 5.36. The

curve obtained with _ = 0 is identical to figure 5.36 where _ # O. The

viscous nature of the second mode is displayed in figure 5.37 for _ = 0.5 and

q = 0.8. Note that as the Reynolds number becomes large the effect of the

term is diminished. Also at high Re, the destabilizing effect of viscosity is

greatly diminished. Figure 5.38 indicates little influence of Reynolds number

on mr for the second mode.

The variation of the growth rate with m at q = 0.8 for the n = 2 mode is

shown in figure 5.39. This is a long wave instability very much like the n =

1 case presented in figure 5.27. For this mode, no sign of instability at

high values of _ was observed. The variation of _r with _ for this mode is

presented in figure 5.40. The effect of viscosity on the n = 2 mode at _ =

0.5 and q = 0.8 is displayed in figure 5.41. At high Reynolds numbers, the
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3ntribution from the _ term is small. However, the behavior at low Re is

uite different. It was found that as the Reynolds number decreases, the

urve associated with _ _ 0 dipped to a minimum value. Even though not shown,

urther decreases in the value of Re caused the growth rate, mi, to attain

arge values, becoming infinite as Re ÷ O. The effect which was pointed out

y Lessen (private communication) is an artifact of the non-parallel mean flow

Lnd means that the viscosity is causing the vortex core to spread at an

infinite rate. By inspection of figure 5.41, the growth rate is asymptoting

;o a constant value as Re increases which makes this mode more likely to be an

inviscid one. This instability needs further testing. The dependency of mr

Jn Reynolds number for the n = 2 mode is displayed in figure 5.42. There is a

_light increase in the value of the real

increases. The effect of setting d_ = 0 on

not presented here.

part of the frequency as Re

mr was negligible and hence is

The variation of the growth rate with axial wavenumber at higher values

of the swirl parameter (q = 1.2) is shown in figure 5.43. The added rotation

has a destabilizing effect especially on the curve associated with _ : O. The

peak growth rate is slightly shifted to higher m with a net increase in the

range of axial wavenumber where instabilities are present. Variation of mr

with _ at this q, shown in figure 5.44, indicates a similar trend to that of

the q = 0.8 case. However, note that the slope of the present curve is much

smaller in comparison to the case displayed in figure 5.40.

The variation of growth rate, mi, with _ for the n = -i mode at q = 0.4

is shown in figure 5.45. The complexity of each individual curve shows signs

of co-instabilities especially at the low end of the axial wavenumber

spectrum. The maximum growth rates are twice as large as the growth rates

associated with the trailing line vortex presented in figure 4.4. Also note
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the enormously widened ranges of _ where instabilities are present. It must

be mentioned that higher modeswere present in this case but they have been

omitted for clarity. However, the most important feature of the present

figure is the crossing of the curves associated with the first and second

modes. This is the first time that such an effect has been observed. In all

of the previous works (including Batchelor's vortex, Long's vortex and

rotating Poiseuille pipe flow) each successively higher mode was entirely

engulfed by the previous mode (e.g. figure 4.4). In such a flow, as has been

pointed out by Maslowe and Stewartson [20], once the value of _ exceeds the

neutra] mode value for the primary mode, the flow becomesstable to all such

inviscid disturbances. This is not the situation here and it seemsthat this

is a property of the multiple cel] vortices. But the question that remains is

why Foster and Duck [23] did not observe such an effect in their inviscid

study of a two cell Long's vortex. Of course, it must be emphasized that

their calculations were for a vortex in an infinite domain.

Another point to be made here is that the crossings of the instability

curves has madenumbering of these modesquite arbitrary. Suchdifficulty has

been encountered previously in the case of rotating pipe flows by Cotton and

Salwen [18]. In the present section, we have numberedeach modeaccording to

their maximumgrowth rates. The variation of mr with axial wavenumberfor

the first two modes are shown in figure 5.46. It seems that there is a

degenerate point occurring near _ : 0.8. At this particular value of _, the

complex frequency for the first mode, _1' is approximately equal _2"

Although figure 5.46 does not indicate that such a state is reached exactly,

many such degenerate points were encountered by Cotton and Salwen [18] in

their viscous study of rotating Poiseuille pipe flow. The inviscid nature of

the n = -I mode at _ = 0.6 and q = 0.4 is presented in figure 5.47. As Re

164



o_

z,.O

3.0

2.0

r 1.0

0

--1,0

--2.0
0

, I ! I I I I

1.0 2.0 3.0 4..0 5.0 6.0

C_

Fig. 5.46 Variation of the real part of
frequency of asymmetric (n : -I)
disturbances with wavenumber for a
two ceil vortex. Here, q : 0.4,
Re = ]0 '_, and _ _ O,

165



0.6

COl

05

O.Z.

03

0.2

0.1

2

3

10 4 10 5

Re

Fig. 5.47 Influence of Reynolds number on

the growth rate of asymmetric

(n = -I) disturbances for a two

ceil vortex. Here, _ = 0.6,

q = 0.4, and @ m O.

166



increased beyond 10,000, the curves show little variation with the Reynolds

number. Figure 5.48 shows a similar trend in the case of the real part of

frequency, mr . The inviscid behavior of this mode at higher values

of _ (_ = 2.5) is shown in figure 5.49. The variation of the growth rate

with axial wavenumber for the n = -I mode at q = 0.8 is shown in figure

5.50. Again, the evidence of co-instabilities is very clear. The addition of

swirl has had a strong destabilizing effect. However, one important

feature is the resemblance of the instability curves for 0 < _ < 1.0 to that

of the trailing line vortex shown in figure 4.4.

At this point, it is interesting to look at the nature of the co-

instabilities (compound instability modes) associated with the primary mode.

This task can be accomplished by moving in axial wavenumber space from high

values of _ towards the low end of the spectrum while looking at the shape of

the eigenfunctions at selected values of _. For the sake of space, we are

going to show only the radial component of the eigenfunction since this is the

component most frequently dealt with in the open literature. It was found

that the nature of radial eigenfunction is typical enough in highlighting the

basic mechanism involved in co-instabilities so that we can omit displaying

the other components of the disturbance eigenfunctions. Figure 5.51a displays

the variation of the radial perturbation with radial distance at _ = 4.0.

Most of the energy of the wave is concentrated at the wall and center part of

the flow with the peak occurring at r : 0.6. For this axial wavenumber,

the disturbance is an R W type. At _ = 3.0, as shown in figure 5.51b, a

small peak in the eigenfunction has appeared at r = O. However, most of the

energy remains in the outer part of the flow and still the perturbation can be

considered an R W type. But the situation is quite different at _ = 2.6 which

is shown in figure 5.51c. Here, the center mode has become the dominant mode
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although most of the energy now is distributed over the entire pipe radius.

This disturbance is clearly a C R W type. At _ = 2.0 (shown in figure

5.51d), the peaks associated with R and W have subsided and C has become the

only significant instability zone. The variation of the eigenfunction with

radial distance for _ = 1.1 is presented in figure 5.51e. At this axial

wavenumber, the two peaks in the outer flow part have almost entirely dis-

appeared. At _ = 0.4 (presented in figure 5.51f), the C type instability

is the sole mode present with no sign of R or W type modes. For this

value of _, the radial eigenfunction approximates the shape of the radial

component of the n = 1, long wave instability (figure 4.27a) of a Batchelor

vortex.

The variation of growth rate, mi' with axial wavenumber, _, at q = 0.8

for the n = -2 mode is shown in figure 5.52. There are signs of co-instabili-

ties for each curve. For this disturbance, the range of _ where instabilities

are present, has doubled. But notice the huge growth rates of the primary

mode. The maximum value of _i for the first mode indicates that the

disturbance has very short e-folding time. Variation of the real part of

frequency with m for the first two modes is shown in figure 5.53. As _ _ 0

the problem of ,node jumping is very much apparent from figures 5.52 and 5.53.

The behavior of n = -2 perturbations with Reynolds number at q = 0.8 and m =

1.0 is shown in figure 5.54. The growth rate is independent of Re for

Reynolds numbers as low as 4000.

It must be clear by now that the behavior of most disturbances are

generally different at low values of _ than those associated with high axial

wavenumbers. It seems that almost all instability modes termed as viscous

modes are only present in the form of long wave instabilities; while evidently

the inviscid modes are only manifested in the form of intermediate or short

wave instabilities.
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5.3 Stability of Three Cell Vortex at Re = 4000

Due to space limitations in this section only the variation of growth

rates with _ for different values of azimuthal wavenumbers are presented. In

the case of the n = -4 mode, the effect of increased swirl on the instability

is shown clearly. However, a detailed presentation for a three cell vortex

similar in extent to that of Section 5.2 is deferred to future studies.

The three velocity components for a three cell vortex are presented in

figure 5.55. Note the core expansion in the azimuthal velocity component

which is caused by the flow reversal of the axial velocity on the

centerline. This flow reversal has displaced the vortex from the central

region and depleted the core area of any rotational kinetic energy. Hence, we

expect non-parallel effects to play an important role, especially at finite

Reynolds numbers.

The variation of the growth rate, _i' with _ for the axisymmetric mode, n

= O, at q = 0.19 is shown in figure 5.56. The first mode is very similar in

extent to the axisymmetric disturbance for a two cell vortex as displayed in

figure 5.20. However, the second mode is peculiar since the growth rate

asymptotes to a constant as _ approaches zero. Further testing revealed that

the second mode of instability appeared to be caused by the same mechanism

discussed in the previous section in relation to fi9ure 5.41 To test this

observation, the growth rate curve was obtained again while setting @ = O,

as shown in figure 5.57. The growth rate of the second mode became so small

that it could not be plotted on the same scale as the first mode. It must be

emphasized here that further testing is needed in order to understand the

nature of this second mode of instability. Of special importance is the

variation of the growth rate with Reynolds number.
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The variation of the growth rate with axial wavenumber for the asymmetric

mode, n = I, at q = 0.19 is shown in figure 5.58. The primary mode has

enormous growth rates over a wide range of _. Also there is evidence of co-

instabilities for the second mode. The nature of the third mode (long wave

instability) makes it a prime candidate to be a viscous mode. The non-

parallel term (@) was set equal to zero and the results are shown in figure

5.59. It is important to emphasize here that mode three did not disappear

altogether, rather its amplification rate, mi' became very small, preventing

its plot on the same scale as the other two modes. However, as in the case of

axisymmetric mode, further testing is required to understand the nature of

this instability. The influence of @ on the first and second modes is

negligible. Actually, in the case of n < O, the parameter _ has no drastic

effect on the nature of instabilities and hence its influence will not be

discussed any further in this section.

Figure 5.60 displays the variation of the growth rate with m for the n

= -I mode at q = 0.19. For this value of azimuthal wavenumber, there are two

modes with comparable growth rates. Notice how different these curves are

when compared to the curves obtained for the two ceil vortex. Incidentally,

the eigenfunctions revealed that these modes are located near the two

inflectional points present in the axial velocity profile.

The behavior of growth rate with _ for an n = -2 disturbance at q = 0.19

is shown in figure 5.61. The primary mode has a growth rate comparable to

that of n = -I perturbations as presented in the previous figure. There are

signs of co-instabilities especially for the first mode. The variation of mi

with axial wavenumber for the n = -3 disturbance at a swirl number of 0.19 is

displayed in figure 5.62. The existence of co-instabilities is very evident.
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Figure 5.63 displays the variation of the growth rate with _ for an n =

-4 perturbation at q = 0.19. Note how similar the behavior of the instability

curves are compared to those of the n = -3 mode shown in the previous

figure. Again, the co-instabilities are present for all three curves plotted

in the figure. Figure 5.64 presents the results obtained at q = 0.38. The

increase in swirl has a strong destabilizing influence on all of the modes.

It has also increased the effective range of _ where instabilities are

present; and crossing of the second and third modes is noted. Further

increases in the swirl parameter to a value of 0.57 (shown in figure 5.65) has

resulted in even larger growth rates. The crossing of the second and third

modes is pronounced. Additional increases in the swirl number to a value of

0.76 produces further increases in the growth rates. The results which are

shown in figure 5.66 indicate that the primary mode's growth rate has very

short e-folding time, attaining a maximum value of 1.22 at c : 4.8. Also,

preliminary calculations indicate that in the cases of multiple cell vortices

substantially more swirl is needed to stablize the flow with respect to these

inviscid disturbances than is needed for a trailing line vortex.

The variation of the growth rate with axial wavenumber at q = 0.19 for an

n = -5 perturbation is shown in figure 5.67. The curves show very similar

behavior to those modes with lower negative azimthual wavenumbers. Finally,

the variation of the growth rate with c for an n = -10 mode at q = 0.19 is

presented in figure 5.68. The range of _ over which the primary mode

remains unstable has increased considerably. This is very much in line with

the asymptotic analysis of [20, 26, 29-31] which predict that at sufficiently

large negative n, the proper scaling for the disturbance axial wavenumber

becomes _/n.
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One interesting observable fact here is the existence of so many

significant unstable disturbances for different values of n at such a low

value of the swirl parameter (q = 0.19). Also, the relatively equal strength

of the various primary instabilities (we are speaking of the primary modes for

different negative n) at this constant q is a bit surprising too. Both of the

above features are not present for a Batchelor's vortex.
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Chapter 6

CONCLUSIONS

The present study was undertaken to obtain the effects of initial mean

velocity profile on the stability characteristics of a streamwise vortex with

the objective of developing control and manipulation strategies for

engineering applications. To that end, the temporal stability of multiple

cell vortices was considered. ]t was shown that cell multiplicity in the

vortex core has drastic effects on the stability characteristics. That is the

multiple cell structure is responsive to a wide range of disturbances with

different azimuthal wavenumbers. This effect is most pronounced in the case

of n > 0 modes where previous studies of single cell trailing line vortices

(as well as the two cell Long vortex) had indicated stability. Here, it was

shown that multiple cell vortices are highly unstable, at least for n = O, +I,

+2 modes, in addition to the usual negative n modes. The enormous growth

rates obtained for the axisymmetric mode (n = O) was surprising since this

particular type of disturbance has never been observed to be unstable before,

even in the case of a two cell Long vortex. Overall, on the basis of the

numerical calculations, it is concluded that the growth rates of instabilities

in multiple cell vortices are substantially larger (two to three fold

increases are observed) than those of a single cell trailing line vortex. It

was also found that there is a substantial increase in the effective range of

axial wavenumbers where instabilities are present in multiple cell vortices.
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Another important feature whose existence has been shown in the present

work is co-instability (short for compound instability modes). These

instability modes have eigenfunctions which show features that can be

characterized as center- and ring-modes as well as wall modeinstability zones

simultaneously. In the case of two and three cell vortices, the growth rate

curves (for n < 0 only) possess multiple peaks (lobes) because of the co-

instabilities. Although the existence of co-instability has been conjectured

by previous asymptotic analyses [20, 26, 32], they had never been produced

numerically.

In addition, this work has shown that viscous forces play a far greater

role in vortex stability than had been believed previously. The variety of

viscous modes obtained for the Batchelor vortex as well as for multiple cell

vortices showed that any future stability calculations must include the

effects of viscosity. Although this subtle role of viscosity was suspected by

Maslowe and Stewartson [20], its extent and influence were unknownprior to

this study.

These viscous disturbances, without any exceptions are long wave

instabilities. Their wavelengths scale with the core radius and have maximum

growth rates which are orders of magnitude smaller than the inviscid modes.

However, based on experimental observation and measurements, these viscous

instability modesappear to be the only physically observed modes.

Based on the present numerical calculations, multiple ceil vortices have

desirable instability charateristics in that breakup and dissipation of these

types of trailing line vortices can be accelerated. Clearly, it is not

necessary to alter the radial variation of the azimuthal componentof velocity

and the radial component of the velocity is quite small and probably would not
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be controlled. Only the axial velocity component must be modified and it is

necessary to induce at least a two cell structure in the flow. The desired

flow is downstream jet along the vortex axis, surrounded by an upstream flow

in the outer portion of the vortex. This opportunity for accelerating vortex

instability warrants further study.

The Chebyshev spectral collocation algorithm, with staggered grid, was

developed to study the stability of multiple cell vortices. The method is an

extension of the technique developed by Khorrami et al. [I0]. The numerical

stability problem has been formulated in primitive variable form, evaluating

the velocity components at the grid points and staggering the pressure at the

mid-grid points. The staggered pressure approach has eliminated the need for

artificial pressure boundary conditions. Direct comparison with other

formulations has shown that the method is robust and produces accurate

results. However, comparison with the non-staggered spectral method of

Khorrami et al. [I0] has shown that contrary to prevailing opinion, when the

artificial pressure boundary conditions are employed correctly they do not

affect the accuracy or the convergence rate of the spectral methods.

While validating the accuracy and convergence behavior of the present

method, two new, long wavelength viscous modes of instability for Batchelor's

vortex were found. These two forms of instabilities include an axisymmetric,

n = O, as well as an asymmetric, n = I mode. This work has shown that the

growth rates associated with these viscous disturbances are orders of

magnitude less than the explosive growth rates of the inviscid perturba-

tions. However, examination of contrail photographs [58, 62] has shown that

both of these new modes can be identified in actual large trailing line

vortices as well as in experimental measurements conducted in laboratory wind

tunnels, [60, 61, 62]. Based on the present results, the following

conclusions can be drawn:
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I. Batchelor's vortex represents a good approximation to trailing line

vortices and can be employed for further stability studies.

2. Although the stability calculations were conducted for a laminar

vortex, the excellent agreement obtained with experimental

measurementsand contrail photographs, which involve mostly turbulent

vortices, suggests that these long wave viscous instabi|ity modes,

once activated, do not interact significantly with the surrounding

turbulent field.

p

Finally, the numerical method used in this study can be adopted easily to

include cases where density stratification or compressibility effects play an

important role. From the enormous body of data on vortices in turbulent

atmospheres, the role played by stratification on vortex behavior is

significant. Since trailing line vortices coexist in such a background, the

effects of density stratification on the instability modes must be examined.
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